分布式ID生成器【snowflake雪花算法】

2020-10-03 10:31|来源: 网络

基于snowflake雪花算法分布式ID生成器

1557488319373.png


snowflake雪花算法分布式ID生成器几大特点:

  1. 41bit的时间戳可以支持该算法使用到2082年

  2. 10bit的工作机器id可以支持1024台机器

  3. 序列号支持1毫秒产生4096个自增序列id

  4. 整体上按照时间自增排序

  5. 整个分布式系统内不会产生ID碰撞

  6. 每秒能够产生26万ID左右


Twitter的 Snowflake分布式ID生成器的JAVA实现方案

import java.lang.management.ManagementFactory;
import java.net.InetAddress;
import java.net.NetworkInterface;

/**
 * <p>名称:IdWorker.java</p>
 * <p>描述:分布式自增长ID</p>
 * <pre>
 *     Twitter的 Snowflake JAVA实现方案
 * </pre>
 * 核心代码为其IdWorker这个类实现,其原理结构如下,我分别用一个0表示一位,用—分割开部分的作用:
 * 1||0---0000000000 0000000000 0000000000 0000000000 0 --- 00000 ---00000 ---000000000000
 * 在上面的字符串中,第一位为未使用(实际上也可作为long的符号位),接下来的41位为毫秒级时间,
 * 然后5位datacenter标识位,5位机器ID(并不算标识符,实际是为线程标识),
 * 然后12位该毫秒内的当前毫秒内的计数,加起来刚好64位,为一个Long型。
 * 这样的好处是,整体上按照时间自增排序,并且整个分布式系统内不会产生ID碰撞(由datacenter和机器ID作区分),
 * 并且效率较高,经测试,snowflake每秒能够产生26万ID左右,完全满足需要。
 * <p>
 * 64位ID (42(毫秒)+5(机器ID)+5(业务编码)+12(重复累加))
 *
 * @author Polim
 */
public class IdWorker {
    // 时间起始标记点,作为基准,一般取系统的最近时间(一旦确定不能变动)
    private final static long twepoch = 1288834974657L;
    // 机器标识位数
    private final static long workerIdBits = 5L;
    // 数据中心标识位数
    private final static long datacenterIdBits = 5L;
    // 机器ID最大值
    private final static long maxWorkerId = -1L ^ (-1L << workerIdBits);
    // 数据中心ID最大值
    private final static long maxDatacenterId = -1L ^ (-1L << datacenterIdBits);
    // 毫秒内自增位
    private final static long sequenceBits = 12L;
    // 机器ID偏左移12位
    private final static long workerIdShift = sequenceBits;
    // 数据中心ID左移17位
    private final static long datacenterIdShift = sequenceBits + workerIdBits;
    // 时间毫秒左移22位
    private final static long timestampLeftShift = sequenceBits + workerIdBits + datacenterIdBits;

    private final static long sequenceMask = -1L ^ (-1L << sequenceBits);
    /* 上次生产id时间戳 */
    private static long lastTimestamp = -1L;
    // 0,并发控制
    private long sequence = 0L;

    private final long workerId;
    // 数据标识id部分
    private final long datacenterId;

    public IdWorker() {
        this.datacenterId = getDatacenterId(maxDatacenterId);
        this.workerId = getMaxWorkerId(datacenterId, maxWorkerId);
    }

    /**
     * @param workerId     工作机器ID
     * @param datacenterId 序列号
     */
    public IdWorker(long workerId, long datacenterId) {
        if (workerId > maxWorkerId || workerId < 0) {
            throw new IllegalArgumentException(String.format("worker Id can't be greater than %d or less than 0", maxWorkerId));
        }
        if (datacenterId > maxDatacenterId || datacenterId < 0) {
            throw new IllegalArgumentException(String.format("datacenter Id can't be greater than %d or less than 0", maxDatacenterId));
        }
        this.workerId = workerId;
        this.datacenterId = datacenterId;
    }

    /**
     * 获取下一个ID
     *
     * @return
     */
    public synchronized long nextId() {
        long timestamp = timeGen();
        if (timestamp < lastTimestamp) {
            throw new RuntimeException(String.format("Clock moved backwards.  Refusing to generate id for %d milliseconds", lastTimestamp - timestamp));
        }

        if (lastTimestamp == timestamp) {
            // 当前毫秒内,则+1
            sequence = (sequence + 1) & sequenceMask;
            if (sequence == 0) {
                // 当前毫秒内计数满了,则等待下一秒
                timestamp = tilNextMillis(lastTimestamp);
            }
        } else {
            sequence = 0L;
        }
        lastTimestamp = timestamp;
        // ID偏移组合生成最终的ID,并返回ID
        long nextId = ((timestamp - twepoch) << timestampLeftShift)
                | (datacenterId << datacenterIdShift)
                | (workerId << workerIdShift) | sequence;

        return nextId;
    }

    private long tilNextMillis(final long lastTimestamp) {
        long timestamp = this.timeGen();
        while (timestamp <= lastTimestamp) {
            timestamp = this.timeGen();
        }
        return timestamp;
    }

    private long timeGen() {
        return System.currentTimeMillis();
    }

    /**
     * <p>
     * 获取 maxWorkerId
     * </p>
     */
    protected static long getMaxWorkerId(long datacenterId, long maxWorkerId) {
        StringBuffer mpid = new StringBuffer();
        mpid.append(datacenterId);
        String name = ManagementFactory.getRuntimeMXBean().getName();
        if (!name.isEmpty()) {
            /*
             * GET jvmPid
             */
            mpid.append(name.split("@")[0]);
        }
        /*
         * MAC + PID 的 hashcode 获取16个低位
         */
        return (mpid.toString().hashCode() & 0xffff) % (maxWorkerId + 1);
    }

    /**
     * <p>
     * 数据标识id部分
     * </p>
     */
    protected static long getDatacenterId(long maxDatacenterId) {
        long id = 0L;
        try {
            InetAddress ip = InetAddress.getLocalHost();
            NetworkInterface network = NetworkInterface.getByInetAddress(ip);
            if (network == null) {
                id = 1L;
            } else {
                byte[] mac = network.getHardwareAddress();
                id = ((0x000000FF & (long) mac[mac.length - 1])
                        | (0x0000FF00 & (((long) mac[mac.length - 2]) << 8))) >> 6;
                id = id % (maxDatacenterId + 1);
            }
        } catch (Exception e) {
            System.out.println(" getDatacenterId: " + e.getMessage());
        }
        return id;
    }


}


本文转载于网络


相关问答

更多
  • mybatis自增主键配置: mybatis进行插入操作时,如果表的主键是自增的,针对不同的数据库相应的操作也不同。基本上经常会遇到的就是 Oracle Sequece 和 Mysql 自增主键。主要说明下在mybatis中对于自增主键的配置。 1、不返回自增主键值: 如果考虑到插入数据的主键不作为其他表插入数据的外键使用,可以考虑这种方式。 Oracle Sequence 配置 TEST_USER SEQ_TEST_USER_ID.nextval insert into (ID,NAME,AGE) val ...
  • 爬虫本质上不需要分布式。因为你要爬一个网站通常5-10个线程足够了,再多就是对网站压力测试了。 你只需要将任务分配到不同的机器上,然后各运行各自己的,结果合并一下就可以。 这个与nutch人map, reduse也没有什么差别。只是手工分,手工合并。当然也可以用脚本分,脚本合并,脚本远程启动。有一个远程控制模块,似乎叫rpy。很简单,很容易上手。可以远程控制一个模块。 数据库用postgresql不是很好。因为爬行结果放在关系型数据库里太吃力。特别是网页内容。通常是URL放在redis里。 内容放在文件系统 ...
  • 分布式软件系统(Distributed Software Systems)是支持分布式处理的软件系统,是在由通信网络互联的多处理机体系结构上执行任务的系统。它包括分布式操作系统、分布式程序设计语言及其编译(解释)系统、分布式文件系统和分布式数据库系统等。 分布式操作系统负责管理分布式处理系统资源和控制分布式程序运行。它和集中式操作系统的区别在于资源管理、进程通信和系统结构等方面。 分布式程序设计语言用于编写运行于分布式计算机系统上的分布式程序。一个分布式程序由若干个可以独立执行的程序模块组成,它们分布于一个 ...
  • 现在的软件开发都讲究个"层"的意思. 分布式开发将一个系统分为三个层次:客户端应用程序,应用程序服务器,后台数据库。客户端提出请求,应用服务器接受请求并处理然后返回数据给客户端,后台数据库当然是提供数据。多半是用于WEB开发.这样的分层开发有很多 好处..我就不多说了...
  • 这个比较复杂,这个属于架构方面的,大概是指客户端和服务器端的关系。以前的程序的服务端比较集中在一块,分布式的服务器端可能分布在不同的地方,如云端等等。。。
  • 一、DFS为何物? DFS 即微软分布式文件系统的简称,系统管理员可以利用它来有效的整合网络资源,并把这些资源以单一的层次结构呈现给网络用户。管理员利用它可以把资源发布成一 个树形结构,这样大大简化了为用户进行资源配置和对资源管理的工作量。我们可以在不同的机器上调整和移动文件,这不会影响到用户的访问。 二、为什么要使用DES? 1、DFS使用了现有网络中的Share权限,管理员不必进行新的配置 2、通过一个DFS树形结构用户就可以访问多个网络资源,而不用再把远程驱动器映射到本地共享资源中。 3、DFS可以配 ...
  • 分布式系统(distributed system)是建立在网络之上的软件系统。正是因为软件的特性,所以分布式系统具有高度的内聚性和透明性。因此,网络和分布式系统之间的区别更多的在于高层软件(特别是操作系统),而不是硬件。内聚性是指每一个数据库分布节点高度自治,有本地的数据库管理系统。透明性是指每一个数据库分布节点对用户的应用来说都是透明的,看不出是本地还是远程。在分布式数据库系统中,用户感觉不到数据是分布的,即用户不须知道关系是否分割、有无复本、数据存于哪个站点以及事务在哪个站点上执行等。 故名思义,分布式 ...
  • 粗略搜索谷歌'休眠定制ID生成器教程'出现以下可能性。 我排除了那些看起来不太有用的内容,并总结了每个内容。 http://www.devx.com/Java/Article/30396 - 涵盖了在数据持久化之前生成ID的问题(因此还没有业务密钥)。 http://docs.jboss.org/hibernate/core/3.6/reference/en-US/html_single/#mapping-declaration - 整个文档非常有用,但并不像参考文献那样。 看其他教程的理想选择。 http ...
  • DB生成器: 容易确定它是独一无二的 需要额外的往返行程(你必须读回生成的ID) 通常很简单(序列) 当事务回滚时,序列中可能会出现空白(感谢Kristen指出了这一点)。 应用ID生成器 可以根据需要尽可能复杂(例如,如果需要,可以在ID中编码对象类型) 难以独特(除非您使用UUID) 即使不与数据库通话,也可以分配ID [编辑]由于UUID非常昂贵(在许多数据库中没有本地支持,索引碎片等),大多数应用程序使用基于数据库的生成器。 DB Generator: Easy to make sure it's ...
  • 天啊,我发现了这个: https : //github.com/erans/pysnowflake OMG, I found this : https://github.com/erans/pysnowflake