Storm 简介

2019-03-02 23:51|来源: 网路

https://github.com/nathanmarz/storm/wiki/Documentation

 

安装和配置

Storm的安装比较简单, 下载storm的release版本, 解压, 并且把bin/目录加到环境变量PATH里面去, 就ok了. 参考配置storm开发环境
当然为了运行Storm, 需要装一些其他的依赖的包, 可以参考Twitter Storm 安装实战

Storm支持单机调试模式, 所以现在如果你已经有包含topology的jar包, 就可以直接运行单机模式来进行测试,

storm jar storm-starter-0.0.1-SNAPSHOT-standalone.jar storm.starter.WordCountTopology

当然实际使用时需要搭建Storm集群, 需要配置Zookeeper和Storm集群,并launch daemons(nimbus, supervisor, UI) , 可以参考Setting up a Storm cluster

对于storm命令, 其实可以理解为storm的客户端, 支持除了上面的jar以外的一系列操作, 参考Command line client

 

如何创建能在storm运行的Jar, Storm Starter

参考新建一个strom项目

https://github.com/nathanmarz/storm-starter

Storm Start给出很好的例子, 下载下来后用Leiningen(here)产生Jar
Lein会根据Project.clj配置, 自动下载和添加依赖包

lein deps
lein compile
lein uberjar

生成Jar后, 就可以使用Storm命令测试

如果要新建项目只需要, 使用lein new创建项目, 然后将Project.clj参考Storm Starter的进行修改就ok了.

 

基本概念

参考, https://github.com/nathanmarz/storm/wiki/Concepts

       http://xumingming.sinaapp.com/138/twitter-storm%E5%85%A5%E9%97%A8/

 

Streams, 流

流作为storm的核心概念, 定义为无限的tuple序列.

什么是tuple?
命名的value序列, 可以理解成Key/value序列, 每个value可以是任何类型, 动态类型不需要事先声明.
Tuple在传输中需要序列化和反序列化, storm集成了普通类型的序列化模块, 用户可以自定义特殊类型的序列化逻辑
A tuple is a named list of values, where each value can be any type.
Tuples are dynamically typed -- the types of the fields do not need to be declared.
Tuples have helper methods like getInteger and getString to get field values without having to cast the result.
Storm needs to know how to serialize all the values in a tuple.

The stream is the core abstraction in Storm. A stream is an unbounded sequence of tuples that is processed and created in parallel in a distributed fashion.
Streams are defined with a schema that names the fields in the stream's tuples. By default, tuples can contain integers, longs, shorts, bytes, strings, doubles, floats, booleans, and byte arrays. You can also define your own serializers so that custom types can be used natively within tuples.

Every stream is given an id when declared. Since single-stream spouts and bolts are so common, OutputFieldsDeclarer has convenience methods for declaring a single stream without specifying an id. In this case, the stream is given the default id of "default".

Resources:

Tuple: streams are composed of tuples

OutputFieldsDeclarer: used to declare streams and their schemas

Serialization: Information about Storm's dynamic typing of tuples and declaring custom serializations

ISerialization: custom serializers must implement this interface

CONFIG.TOPOLOGY_SERIALIZATIONS: custom serializers can be registered using this configuration

 

Spouts, 流的源头

Spout是Storm里面特有的名词, Stream的源头. 通常是从外部数据源读取tuples, 并emit到topology.
Spout可以同时emit多个tuple stream, 通过OutputFieldsDeclarer中的declareStream method来定义
Spout需要实现IRichSpout接口, 最重要的方法是nextTuple, storm会不断调用该接口从spout中取数据
同时需要注意, Spout分为reliable or unreliable两种, 对于reliable, 还支持ack和fail方法, 具体参考"Reliability”

下面给出个nextTuple的例子, 从words里面随机选一个tuple作为输出

public void nextTuple() {
    Utils.sleep(100);
    final String[] words = new String[] {"nathan", "mike",
                     "jackson", "golda", "bertels"};
    final Random rand = new Random();
    final String word = words[rand.nextInt(words.length)];
    _collector.emit(new Values(word));
}

A spout is a source of streams in a topology.
Generally spouts will read tuples from an external source and emit them into the topology (e.g. a Kestrel queue or the Twitter API).
Spouts can either be reliable or unreliable. A reliable spout is capable of replaying a tuple if it failed to be processed by Storm, whereas an unreliable spout forgets about the tuple as soon as it is emitted.

Spouts can emit more than one stream. To do so, declare multiple streams using the declareStream method of OutputFieldsDeclarer and specify the stream to emit to when using the emit method on SpoutOutputCollector.

The main method on spouts is nextTuple. nextTuple either emits a new tuple into the topology or simply returns if there are no new tuples to emit. It is imperative that nextTuple does not block for any spout implementation, because Storm calls all the spout methods on the same thread.

The other main methods on spouts are ack and fail. These are called when Storm detects that a tuple emitted from the spout either successfully completed through the topology or failed to be completed. ack and fail are only called for reliable spouts. See the Javadoc for more information.

Resources:

IRichSpout: this is the interface that spouts must implement.

Guaranteeing message processing

 

Bolts, 流的处理节点

对于Bolt, 用户可以定义任意的处理逻辑, 最重要的方法是execute, 输入为tuple, 输出为emit 0或多个tuples到OutputCollector. 

Bolt支持多个输入流和emit多个输出流, 输出流和spout一样, 通过OutputFieldsDeclarer中的declareStream method来定义; 对于输入流, 如果想subscribe上层节点的多个输出streaming, 需要显式的通过stream_id去订阅, 如果不明确指定stream_id, 默认会订阅default stream.

public static class ExclamationBolt implements IRichBolt {
    OutputCollector _collector;
 
    public void prepare(Map conf, TopologyContext context,
                        OutputCollector collector) {
        _collector = collector;
    }
 
    public void execute(Tuple tuple) {
        _collector.emit(tuple, new Values(tuple.getString(0) + "!!!"));
        _collector.ack(tuple);
    }
 
    public void cleanup() {
    }
 
    public void declareOutputFields(OutputFieldsDeclarer declarer) {
        declarer.declare(new Fields("word"));
    }
}

All processing in topologies is done in bolts. Bolts can do anything from filtering, functions, aggregations, joins, talking to databases, and more.

Bolts can do simple stream transformations. Doing complex stream transformations often requires multiple steps and thus multiple bolts. For example, transforming a stream of tweets into a stream of trending images requires at least two steps: a bolt to do a rolling count of retweets for each image, and one or more bolts to stream out the top X images (you can do this particular stream transformation in a more scalable way with three bolts than with two).

Bolts can emit more than one stream. To do so, declare multiple streams using the declareStream method of OutputFieldsDeclarer and specify the stream to emit to when using the emit method on OutputCollector.

When you declare a bolt's input streams, you always subscribe to specific streams of another component. If you want to subscribe to all the streams of another component, you have to subscribe to each one individually. InputDeclarer has syntactic sugar for subscribing to streams declared on the default stream id. Saying declarer.shuffleGrouping("1") subscribes to the default stream on component "1" and is equivalent to declarer.shuffleGrouping("1", DEFAULT_STREAM_ID).

The main method in bolts is the execute method which takes in as input a new tuple. Bolts emit new tuples using the OutputCollector object. Bolts must call the ack method on the OutputCollector for every tuple they process so that Storm knows when tuples are completed (and can eventually determine that its safe to ack the original spout tuples). For the common case of processing an input tuple, emitting 0 or more tuples based on that tuple, and then acking the input tuple, Storm provides an IBasicBolt interface which does the acking automatically.

Its perfectly fine to launch new threads in bolts that do processing asynchronously. OutputCollector is thread-safe and can be called at any time.

Resources:

IRichBolt: this is general interface for bolts.

IBasicBolt: this is a convenience interface for defining bolts that do filtering or simple functions.

OutputCollector: bolts emit tuples to their output streams using an instance of this class

Guaranteeing message processing

 

Topologies, 拓扑

可以理解为类似MapReduce job
根本区别, MR job执行完就结束, 而Topology会一直存在. 因为MR流动的是代码, 而Storm流动的数据.
所以Storm不可能替代MR, 因为对于海量数据, 数据的流动是不合理的
另一个区别, 我自己的想法, Topology对工作流有更好的支持, 而MR job往往只能完成一个map/reduce的过程, 而对于复杂的操作, 需要多个MR job才能完成.
而Topology的定义更加灵活, 可以简单的使用一个topology支持比较复杂的工作流场景

topology结构

Storm Topology是基于Thrift结构, 并且Nimbus是个Thrift server, 所以对于Topology可以用任何语言实现, 最终都是转化为Thrift结构

具体的Java版本的Topology的例子,

TopologyBuilder builder = new TopologyBuilder();

builder.setSpout(1, new RandomSentenceSpout(), 5 );

builder.setBolt(2, new SplitSentence(), 8 ).shuffleGrouping(1);

builder.setBolt(3, new WordCount(), 12).fieldsGrouping(2, new Fields("word"));

Topology有一个spout, 两个bolt. setSpout和setBolt的参数都是一样, 分别为id(在Topology中的唯一标识); 处理逻辑(对于Spout就是数据产生function); 并发线程数(task数)
其中对于spout需要实现IRichSpout接口, 而bolt需要实现IRichBolt接口
比较特别的是, setBolt方法会返回一个InputDeclarer对象, 并且该对象是用来定义Bolt输入的, 比如上面.shuffleGrouping(1), 用1(spout)的输出流作为输入

The logic for a realtime application is packaged into a Storm topology. A Storm topology is analogous to a MapReduce job. One key difference is that a MapReduce job eventually finishes, whereas a topology runs forever (or until you kill it, of course). A topology is a graph of spouts and bolts that are connected with stream groupings. These concepts are described below.

Since topology definitions are just Thrift structs, and Nimbus is a Thrift service, you can create and submit topologies using any programming language.

Resources:

TopologyBuilder: use this class to construct topologies in Java

Running topologies on a production cluster

Local mode: Read this to learn how to develop and test topologies in local mode.

 

Nimbus和Supervisor

在Storm的集群里面有两种节点:
Nimbus节点, 主节点, 它的作用类似Hadoop里面的JobTracker. Nimbus is responsible for distributing code around the cluster, assigning tasks to machines, and monitoring for failures.
Supervisor的节点, 工作节点, listens for work assigned to its machine and starts and stops worker processes as necessary based on what Nimbus has assigned to it.
Each worker process executes a subset of a topology; a running topology consists of many worker processes spread across many machines.

storm topology结构

Nimbus和Supervisor之间的所有协调工作都是通过一个Zookeeper集群来完成
nimbus进程和supervisor都是快速失败(fail-fast)和无状态的, 所有的状态都存储在Zookeeper或本地磁盘上
这也就意味着你可以用kill -9来杀死nimbus和supervisor进程, 然后再重启它们, 它们可以继续工作
更重要的是, nimbus和supervisor的fail或restart不会影响worker的工作, 不象Hadoop, Job tracker的fail会导致job失败

 

Workers, Executor, Tasks

参考 Storm Topology的并发度

 

Stream groupings

如果从task的粒度来看一个运行的topology, 它应该如图, 所以需要策略决定blot和spout, 以及bolt之间的数据流向问题

从task角度来看topology

Part of defining a topology is specifying for each bolt which streams it should receive as input. A stream grouping defines how that stream should be partitioned among the bolt's tasks.

There are seven built-in stream groupings in Storm, and you can implement a custom stream grouping by implementing the CustomStreamGrouping interface:

  1. Shuffle grouping: Tuples are randomly distributed across the bolt's tasks in a way such that each bolt is guaranteed to get an equal number of tuples.
  2. Fields grouping: The stream is partitioned by the fields specified in the grouping. For example, if the stream is grouped by the "user-id" field, tuples with the same "user-id" will always go to the same task, but tuples with different "user-id"'s may go to different tasks.
  3. All grouping: The stream is replicated across all the bolt's tasks. Use this grouping with care.
  4. Global grouping: The entire stream goes to a single one of the bolt's tasks. Specifically, it goes to the task with the lowest id.
  5. None grouping: This grouping specifies that you don't care how the stream is grouped. Currently, none groupings are equivalent to shuffle groupings. Eventually though, Storm will push down bolts with none groupings to execute in the same thread as the bolt or spout they subscribe from (when possible).
  6. Direct grouping: This is a special kind of grouping. A stream grouped this way means that the producer of the tuple decides which task of the consumer will receive this tuple. Direct groupings can only be declared on streams that have been declared as direct streams. Tuples emitted to a direct stream must be emitted using one of the emitDirect methods. A bolt can get the task ids of its consumers by either using the provided TopologyContext or by keeping track of the output of the emit method in OutputCollector (which returns the task ids that the tuple was sent to).
  7. Local or shuffle grouping: If the target bolt has one or more tasks in the same worker process, tuples will be shuffled to just those in-process tasks. Otherwise, this acts like a normal shuffle grouping.

Resources:

TopologyBuilder: use this class to define topologies

InputDeclarer: this object is returned whenever setBolt is called on TopologyBuilder and is used for declaring a bolt's input streams and how those streams should be grouped

CoordinatedBolt: this bolt is useful for distributed RPC topologies and makes heavy use of direct streams and direct groupings

 

Reliability

Storm guarantees that every spout tuple will be fully processed by the topology. It does this by tracking the tree of tuples triggered by every spout tuple and determining when that tree of tuples has been successfully completed. Every topology has a "message timeout" associated with it. If Storm fails to detect that a spout tuple has been completed within that timeout, then it fails the tuple and replays it later.

To take advantage of Storm's reliability capabilities, you must tell Storm when new edges in a tuple tree are being created and tell Storm whenever you've finished processing an individual tuple. These are done using the OutputCollector object that bolts use to emit tuples. Anchoring is done in the emit method, and you declare that you're finished with a tuple using the ack method.

This is all explained in much more detail on Guaranteeing message processing (《storm如何保证消息不丢失》)


转自:http://www.cnblogs.com/fxjwind/archive/2013/05/03/3057037

相关问答

更多
  • 重点推荐spring框架,非常实用。 基本上把所有事情都做了,只剩下业务逻辑留给你自己实现。
  • bg4.png storm的,这方面不多,有资料可以参考 Storm入门指南 基于Storm进行实时网络攻击检测及数据挖掘文档下载 hadoop、storm、数据挖掘等文档分享 storm实时流计算应用开发框架-天罡从需求到技术方案介绍 hadoop、hive、storm文档、电子书籍分享 storm编程入门:基本概念 hadoop、storm、hbase面试题、工作日常问答 Storm相关20文档与相关包 Storm入门教程汇总
  • MATLAB软件是美国MathWorks公司出品的商业数学软件,用于算法开发、数据可视化、数据分析以及数值计算的高级技术计算语言和交互式环境,主要包括MATLAB和Simulink两大部分。   MATLAB的特点是可以进行矩阵运算、绘制函数和数据、实现算法、创建用户界面、连接其他编程语言的程序等,主要应用于工程计算、控制设计、信号处理与通讯、图像处理、信号检测、金融建模设计与分析等领域。   MATLAB的优势主要有四个方面: 1. 高效的数值计算及符号计算功能,能使用户从繁杂的数学运算分析中解脱出来; ...
  • charge up原意充电、提价,此句与a storm意思是索取很多,即大量借款
  • Hi: 下列还有三个短语相同意思: cook up a storm烹饪上露一手 dance up a storm舞姿翩翩 talk up a storm 侃侃而谈 [MAINLY US INFORMAL:主要用于美国,非正式用语] to do something with a lot of energy and often skill:[以非凡的能力和技能做某事] Rob was in the kitchen cooking up a storm. Rob在厨房里大显身手. (from Cambridge ...
  • 当下雨的时候,风暴都到了
  • bg4.png 如果对zookeeper系统的认识一下,可能会加深理解,下面可以参考:zookeeper适用场景:zookeeper解决了哪些问题什么是ZooKeeper,ZooKeeper 能干什么?ZooKeeper的作用zookeeper原理zookeeper适用场景:如何竞选Master及代码实现zookeeper适用场景:配置文件同步分布式网站架构:zookeeper技术浅析zookeeper适用场景:分布式锁实现
  • Storm是什么文件[2023-06-19]

    Storm译为汉语即‘暴风雨’、“暴风雪”,是暴风影音软件的英文名,是一种媒体播放器。   Storm还是一个分布式的、容错的实时计算系统,由BackType开发,广泛用于进行实时日志处理,实时统计、实时风控、实时推荐等场景中,目前最新版本是Storm 0.8.0。   Storm还是外文歌曲的名字,具体可在百度音乐中搜索。
  • 只要你独立运行它们,我认为不应该有任何问题。 As long as you are running them independently I don't think there should be any issues.
  • 您需要将json属性从json对象中拉出,并将两个值(json对象和String groupId)作为双值元组传递。 当您将流声明为拓扑规范逻辑的一部分时,您将为第二个字段指定名称“groupId”,并且事情应该正常工作。 如果您不想修改Kafka喷口,则需要有一个中间螺栓,其唯一目的是将groupId从json对象中分离出来。 中间螺栓还可以使用定向流(emitDirect()方法),将目标放在json对象中的groupId上。 这就是为什么我不重复使用Kafka喷口的一个原因 - 除了盲目地将数据写入流 ...